118 research outputs found

    Descriptions of larval and pupal morphologies of Macrohyliota militaris (Erichson) (Silvanidae: Brontinae: Brontini)

    Get PDF
    The mature larva and pupa of the Australian silvanid species, Macrohyliota militaris (Erichson) are described from laboratory reared material. This is the first description of immature stages of Silvanidae from Australia. The larva of M. militaris conforms to the general body shape and apparent morphological features of known Brontini and is very similar to the Asian M. sculptus Yoshida & Hirowatari. Larval and pupal features of M. militaris are compared with other known larvae and pupae of Brontini described in the literature

    A Mesozoic Clown Beetle Myrmecophile (Coleoptera: Histeridae)

    Get PDF
    Complex interspecies relationships are widespread among metazoans, but the evolutionary history of these lifestyles is poorly understood. We describe a fossil beetle in 99-million-year-old Burmese amber that we infer to have been a social impostor of the earliest-known ant colonies. Promyrmister kistneri gen. et sp. nov. belongs to the haeteriine clown beetles (Coleoptera: Histeridae), a major clade of ‘myrmecophiles’—specialized nest intruders with dramatic anatomical, chemical and behavioral adaptations for colony infiltration. Promyrmister reveals that myrmecophiles evolved close to the emergence of ant eusociality, in colonies of stem-group ants that predominate Burmese amber, or with cryptic crown-group ants that remain largely unknown at this time. The clown beetle-ant relationship has been maintained ever since by the beetles host-switching to numerous modern ant genera, ultimately diversifying into one of the largest radiations of symbiotic animals. We infer that obligate behavioral symbioses can evolve relatively rapidly, and be sustained over deep time

    A Mesozoic Clown Beetle Myrmecophile (Coleoptera: Histeridae)

    Get PDF
    Complex interspecies relationships are widespread among metazoans, but the evolutionary history of these lifestyles is poorly understood. We describe a fossil beetle in 99-million-year-old Burmese amber that we infer to have been a social impostor of the earliest-known ant colonies. Promyrmister kistneri gen. et sp. nov. belongs to the haeteriine clown beetles (Coleoptera: Histeridae), a major clade of ‘myrmecophiles’—specialized nest intruders with dramatic anatomical, chemical and behavioral adaptations for colony infiltration. Promyrmister reveals that myrmecophiles evolved close to the emergence of ant eusociality, in colonies of stem-group ants that predominate Burmese amber, or with cryptic crown-group ants that remain largely unknown at this time. The clown beetle-ant relationship has been maintained ever since by the beetles host-switching to numerous modern ant genera, ultimately diversifying into one of the largest radiations of symbiotic animals. We infer that obligate behavioral symbioses can evolve relatively rapidly, and be sustained over deep time

    Contribution to the genus Filipinolotis Miyatake, 1994 (Coleoptera, Coccinellidae, Sticholotidini)

    Get PDF
    The genus Filipinolotis Miyatake has been reviewed in this study. Descriptions and illustrations of two species (F. latefasciata Miyatake and F. purpuratorotunda Wang, Zhang & Ślipiński, sp. n.) in the Luzon island of the Philippines, are given. The male genitalia of F. latefasciata are described for the first time. A key to known species is also provided

    The role of the triangle singularity in Λ(1405)\Lambda(1405) production in the πpK0πΣ\pi^-p\rightarrow K^0\pi\Sigma and pppK+πΣpp\rightarrow pK^+\pi\Sigma processes

    Full text link
    We have investigated the cross section for the πpK0πΣ\pi^-p\rightarrow K^0\pi\Sigma and pppK+πΣpp\rightarrow pK^+\pi\Sigma reactions paying attention to a mechanism that develops a triangle singularity. The triangle diagram is realized by the decay of a NN^* to KΣK^*\Sigma and the KK^* decay into πK\pi K, and the πΣ\pi\Sigma finally merges into Λ(1405)\Lambda(1405). The mechanism is expected to produce a peak around 21402140 MeV in the KΛ(1405)K\Lambda(1405) invariant mass. We found that a clear peak appears around 21002100 MeV in the KΛ(1405)K\Lambda(1405) invariant mass which is about 4040 MeV lower than the expectation, and that is due to the resonance peak of a NN^* resonance which plays a crucial role in the KΣK^*\Sigma production. The mechanism studied produces the peak of the Λ(1405)\Lambda(1405) around or below 1400 MeV, as is seen in the pppK+πΣpp\rightarrow pK^+\pi\Sigma HADES experiment.Comment: 12 pages, 9 figure

    Genomic changes in the biological control agent Cryptolaemus montrouzieri associated with introduction

    Get PDF
    Biological control is the main purpose of intentionally introducing non‐native invertebrate species. The evolutionary changes that occur in the populations of the introduced biological control agents may determine the agent's efficiency and the environmental safety. Here, to explore the pattern and extent of potential genomic changes in the worldwide introduced predatory ladybird beetle Cryptolaemus montrouzieri, we used a reduced‐representation sequencing method to analyze the genome‐wide differentiation of the samples from two native and five introduced locations. Our analyses based on a total of 53,032 single nucleotide polymorphism loci showed that beetles from the introduced locations in Asia and Europe exhibited significant reductions in genetic diversity and high differentiation compared with the samples from the native Australian range. Each introduced population belonged to a unique genetic cluster, while the beetles from two native locations were much more similar. These genomic patterns were also detected when the dataset was pruned for genomic outlier loci (52,318 SNPs remaining), suggesting that random genetic drift was the main force shaping the genetic diversity and population structure of this biological control agent. Our results provide a genome‐wide characterization of polymorphisms in a biological control agent and reveal genomic differences that were influenced by the introduction history. These differences might complicate assessments of the efficiency of biological control and the invasion potential of this species but also indicate the feasibility of selective breeding

    Integrated phylogenomics and fossil data illuminate the evolution of beetles

    Get PDF
    Beetles constitute the most biodiverse animal order with over 380,000 described species and possibly several million more yet unnamed. Recent phylogenomic studies have arrived at considerably incongruent topologies and widely varying estimates of divergence dates for major beetle clades. Here we use a dataset of 68 single-copy nuclear protein coding genes sampling 129 out of the 193 recognized extant families as well as the first comprehensive set of fully-justified fossil calibrations to recover a refined timescale of beetle evolution. Using phylogenetic methods that counter the effects of compositional and rate heterogeneity we recover a topology congruent with morphological studies, which we use, combined with other recent phylogenomic studies, to propose several formal changes in the classification of Coleoptera: Scirtiformia and Scirtoidea sensu nov., Clambiformia ser. nov. and Clamboidea sensu nov., Rhinorhipiformia ser. nov., Byrrhoidea sensu nov., Dryopoidea stat. res., Nosodendriformia ser. nov., and Staphyliniformia sensu nov., Erotyloidea stat. nov., Nitiduloidea stat. nov., and Cucujoidea sensu nov., alongside changes below the superfamily level. Our divergence time analyses recovered a late Carboniferous origin of Coleoptera, a late Paleozoic origin of all modern beetle suborders, and a Triassic–Jurassic origin of most extant families, while fundamental divergences within beetle phylogeny did not coincide with the hypothesis of a Cretaceous Terrestrial Revolution

    Variation in life history traits and transcriptome associated with adaptation to diet shifts in the ladybird Cryptolaemus montrouzieri

    Get PDF
    Background: Despite the broad diet range of many predatory ladybirds, the mechanisms involved in their adaptation to diet shifts are not completely understood. Here, we explored how a primarily coccidophagous ladybird Cryptolaemus montrouzieri adapts to feeding on aphids. Results: Based on the lower survival rate, longer developmental time, and lower adult body weight and reproduction rate of the predator, the aphid Megoura japonica proved being less suitable to support C. montrouzieri as compared with the citrus mealybug Planococcus citri. The results indicated up-regulation of genes related to ribosome and translation in fourth instars, which may be related to their suboptimal development. Also, several genes related to biochemical transport and metabolism, and detoxification were up-regulated as a result of adaptation to the changes in nutritional and non-nutritional (toxic) components of the prey. Conclusion: Our results indicated that C. montrouzieri succeeded in feeding on aphids by regulation of genes related to development, digestion and detoxification. Thus, we argue that these candidate genes are valuable for further studies of the functional evolution of ladybirds led by diet shifts

    The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia

    Get PDF
    During the Mid-Miocene Climatic Optimum [MMCO, ~14 to 17 million years (Ma) ago], global temperatures were similar to predicted temperatures for the coming century. Limited megathermal paleoclimatic and fossil data are known from this period, despite its potential as an analog for future climate conditions. Here, we report a rich middle Miocene rainforest biome, the Zhangpu biota (~14.7 Ma ago), based on material preserved in amber and associated sedimentary rocks from southeastern China. The record shows that the mid-Miocene rainforest reached at least 24.2°N and was more widespread than previously estimated. Our results not only highlight the role of tropical rainforests acting as evolutionary museums for biodiversity at the generic level but also suggest that the MMCO probably strongly shaped the East Asian biota via the northern expansion of the megathermal rainforest biome. The Zhangpu biota provides an ideal snapshot for biodiversity redistribution during global warming
    corecore